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MULTIPLIERS IN HILBERT ALGEBRAS

Kyung Ho Kim*

Abstract. In this paper, we introduce the concept of multiplier in
a Hilbert algebra and obtained some properties of multipliers. Also,
we introduce the simple multiplier and characterized the kernel of
multipliers in Hilbert algebras.

1. Introduction

The concept of Hilbert algebra was introduced in early 50-ties by L.
Henkin and T. Skolem for some investigations of implication in intuition-
istic and other classical logics. In 60-ties, these algebras were studied
especially, by A. Horn and A. Diego [3] from algebraic point of view.
Recently, the Hilbert algebras were treated by D. Buseneag [1, 2]. In [4]
a partial multiplier on a commutative semigroup (A, ·) has been intro-
duced as a function F from a nonvoid subset DF of A into A such that
F (x) ·y = x ·F (y) for all x, y ∈ DF . In this paper, we introduce the con-
cept of multiplier in a Hilbert algebra and obtained some properties of
multipliers. Also, we introduce the simple multiplier and characterized
the kernel of multipliers in Hilbert algebras.

2. Preliminaries

A Hilbert algebra is a triple (H, ∗, 1), where H is a nonempty set,
“ ∗ ” is a binary operation on H, 1 ∈ H is an element such that the
following three axioms are satisfied for every x, y, z ∈ H:
(H1) x ∗ (y ∗ x) = 1,
(H2) (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1,
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(H3) if x ∗ y = y ∗ x = 1 then x = y.

If H is a Hilbert algebra, then the relation x ≤ y if and only if x ∗ y = 1
is a partial order on H, which will be called the natural ordering on H.
With respect to this ordering, 1 is the largest element of H. A subset
S of a Hilbert algebra H is called a subalgebra of H if x ∗ y ∈ S for
all x, y ∈ S. A mapping f : H → H ′ of Hilbert algebras is called a
homomorphism if f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ H. Also, f is said
to be non-expansive if f(x) ≤ x.

In a Hilbert algebra H, the following properties hold for all x, y, z ∈
H,

(H4) x ∗ x = 1,
(H5) x ∗ 1 = 1,
(H6) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z),
(H7) 1 ∗ x = x,
(H8) x ∗ (y ∗ z) = y ∗ (x ∗ z),
(H9) x ∗ ((x ∗ y) ∗ y)) = 1,

(H10) x ≤ y implies z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z.

For any x, y in a Hilbert algebra H, we define x∨y = (y ∗x)∗x. Note
that x∨ y is an upper bound of x and y. A Hilbert algebra H is said to
be commutative if for all x, y ∈ H,

(y ∗ x) ∗ x = (x ∗ y) ∗ y, i.e., x ∨ y = y ∨ x.

Let H be a Hilbert algebra. A subset F of Hilbert algebras H is
called a deductive system if it satisfies

(1) 1 ∈ F,
(2) If x ∈ F and x ∗ y ∈ F, then y ∈ F for all x, y ∈ H.

3. Multipliers in Hilbert algebras

In what follows, let H denote a Hilbert algebra unless otherwise spec-
ified.

Definition 3.1. Let (H, ∗, 1) be a Hilbert algebra. A self-map f of
H is called a multiplier if

f(x ∗ y) = x ∗ f(y)

for all x, y ∈ H.
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Example 3.2. Let H = {1, a, b, c} be a set in which “∗” is defined
by

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 1 1 c
c 1 1 1 1

It is easy to check that (H, ∗, 1) is a Hilbert algebra. Define a map
f : H → H by

f(x) =

{
1 if x = 1, b, c

a if x = a

Then it is easy to check that f is a multiplier of Hilbert algebra H.

Example 3.3. Let H = {1, a, b, c} be a set in which “∗” is defined
by

∗ 1 a b c
1 1 a b c
a 1 1 b b
b 1 a 1 a
c 1 1 1 1

It is easy to check that (H, ∗, 1) is a Hilbert algebra. Define a map
f : H → H by

f(x) =

{
1 if x = 1, a

b if x = b, c

Then it is easy to check that f is a multiplier of a Hilbert algebra H.

Example 3.4. The identity mapping ε, the unit mapping ι : a 7−→ 1
are multipliers of H.

Lemma 3.5. Let f be a multiplier in a Hilbert algebra H. Then we
have f(1) = 1.

Proof. Substituting f(1) for x and 1 for y in Definition 3.1, we obtain
f(1) = f(f(1) ∗ 1) = f(1) ∗ f(1) = 1.

Proposition 3.6. Let f be a multiplier in a Hilbert algebra H. Then
(1) x ≤ f(x) for all x ∈ H,
(2) f(x) ∗ f(y) ≤ f(x ∗ y) for all x, y ∈ H.
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Proof. (1) Putting x = y in Definition 3.1, we get 1 = f(1) = f(x ∗
x) = x ∗ f(x), that is, x ≤ f(x).

(2) Since x ≤ f(x) for all x ∈ H, it follows from (H10) that f(x) ∗
f(y) ≤ x ∗ f(y) = f(x ∗ y) for all x, y ∈ H.

Let H be a Hilbert algebra and f be a multiplier on H. If x ≤ y
implies f(x) ≤ f(y), f is said to be isotone.

Proposition 3.7. Let f is a multiplier of H and an endomorphism.
Then f is isotone.

Proof. Let x ≤ y for any x, y ∈ H. Then x∗y = 1. Now f(x)∗f(y) =
f(x ∗ y) = f(1) = 1, which implies f(x) ≤ f(y). This completes the
proof.

Theorem 3.8. Let f be a multiplier of H and non-expansive. Then
f is an endomorphism of H.

Proof. Let f be a multiplier of H and non-expansive. Then we have
f(x) ≤ x. Hence f(x ∗ y) = x ∗ f(y) ≤ f(x) ∗ f(y) by (H10) and so
f(x)∗f(y) = f(x∗y) from Proposition 3.6 (2) and (H3). This completes
the proof.

The converse of Theorem 3.8 is not true in general.

Example 3.9. In Example 3.3, it is easy to know that f is an homo-
morphism of H. But f(a) ∗ a = 1 ∗ a = a, that is, f(a) 6≤ a. Hence the
converse of Theorem 3.8 is not true in general.

Let H be a Hilbert algebra and f1, f2 two self-maps. We define f1◦f2 :
H → H by

(f1 ◦ f2)(x) = f1(f2(x))
for all x ∈ H.

Proposition 3.10. Let H be a Hilbert algebra and f1, f2 two mul-
tipliers of H. Then f1 ◦ f2 is also a multiplier of H.

Proof. Let H be a Hilbert algebra and f1, f2 two multipliers of H.
Then we have

(f1 ◦ f2)(a ∗ b) = f1(f2(a ∗ b))

= f1(a ∗ f2(b))

= a ∗ f1(f2(b))

= a ∗ (f1 ◦ f2)(b)
for any a, b ∈ H. This completes the proof.
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Let H be a Hilbert algebra and f1, f2 two self-maps. We define f1∨f2 :
H → H by

(f1 ∨ f2)(x) = f1(x) ∨ f2(x)

for all x ∈ H.

Proposition 3.11. Let H be a Hilbert algebra and f1, f2 two mul-
tipliers of H. Then f1 ∨ f2 is also a multiplier of H.

Proof. Let H be a Hilbert algebra and f1, f2 two multipliers of H.
Then we have

(f1 ∨ f2)(a ∗ b) = f1(a ∗ b) ∨ f2(a ∗ b) = (a ∗ f1(b)) ∨ (a ∗ f2(b))

= ((a ∗ f2(b)) ∗ (a ∗ f1(b))) ∗ (a ∗ f1(b))

= (a ∗ (f2(b) ∗ f1(b))) ∗ (a ∗ f1(b))

= a ∗ ((f2(b) ∗ f1(b)) ∗ f1(b))

= a ∗ (f1(b) ∨ f2(b))

= a ∗ (f1 ∨ f2)(b)

for any a, b ∈ H. This completes the proof.

Let H1 and H2 be two Hilbert algebras. Then H1 × H2 is also a
Hilbert algebra with respect to the point-wise operation given by

(a, b) ∗ (c, d) = (a ∗ c, b ∗ d)

for all a, c ∈ H1 and b, d ∈ H2.

Proposition 3.12. Let H1 and H2 be two Hilbert algebras. Define
a map f : H1 × H2 → H1 × H2 by f(x, y) = (x, 1) for all (x, y) ∈
X1 ×X2. Then f is a multiplier of H1 ×H2 with respect to the point-
wise operation.

Proof. Let (x1, y1), (x2, y2) ∈ H1 ×H2. The we have

f((x1, y1) ∗ (x2, y2)) = f(x1 ∗ x2, y1 ∗ y2)

= (x1 ∗ x2, 1)

= (x1 ∗ x2, y1 ∗ 1)

= (x1, y1) ∗ (x2, 1)

= (x1, y1) ∗ f(x2, y2).

Therefore f is a multiplier of the direct product H1 ×H2.

Denote by M(H) the set of all multipliers of H.
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Definition 3.13. For any f ∈ M(H), we define the kernel of f as
follows:

Kerf := {x ∈ H | f(x) = 1}.
Proposition 3.14. Let f be a multiplier of H. Then Kerf is a

subalgebra of H.

Proof. Clearly, 1 ∈ Kerf and so Kerf is nonempty. For any x, y ∈
Kerf, we have f(x ∗ y) = x ∗ f(y) = x ∗ 1 = 1, and so x ∗ y ∈ Kerf.
Hence Kerf is a subalgebra of H.

Theorem 3.15. Let f be a multiplier and an endomorphism of H.
Then Kerf is a deductive system of H.

Proof. Clearly, 1 ∈ Kerf since f(1) = 1. Let x ∈ Kerf and x ∗ y ∈
Kerf. Then 1 = f(x ∗ y) = f(x) ∗ f(y) = 1 ∗ f(y) = f(y), and so
y ∈ Kerf. This completes the proof.

Proposition 3.16. Let f ∈M(H). Then f is one-one if and only if
Kerf = {1}.

Proof. Necessity is obvious. Assume that Kerf = {1}. Let x, y ∈ H
be such that f(x) = f(y). Then f(x) ∗ f(y) = 1. Since x ≤ f(x) for all
x ∈ H, it follows from (H10) that 1 = f(x) ∗ f(y) ≤ x ∗ f(y) = f(x ∗ y)
so that f(x ∗ y) = 1, that is, x ∗ y ∈ Kerf = {1}. Hence x ∗ y = 1.
Similarly, we have y ∗x = 1 and so x = y. This completes the proof.

Proposition 3.17. Let f be an isotone multiplier of H. If x ≤ y and
x ∈ Kerf for any y ∈ H, then y ∈ Kerf .

Proof. Let f be an isotone multiplier. If x ≤ y and x ∈ Kerf ,
then f(x) ≤ f(y), and so 1 = f(x) ∗ f(y) = 1 ∗ f(y) = f(y). Hence
y ∈ Kerf .

Proposition 3.18. Let f be a multiplier of H. If f is isotone and
f2 = f, Kerf is a deductive system of H.

Proof. Let f be isotone and x, x ∗ y ∈ Kerf, respectively. Then we
have f(x) = 1 and f(x ∗ y) = 1. Thus we have 1 = f(x ∗ y) = x ∗ f(y),
which implies x ≤ f(y). Since f is isotone, we get 1 = f(x) ≤ f(f(y)) =
f(y). This implies f(y) = 1, that is, y ∈ Kerf. This completes the
proof.

Let H be a Hilbert algebra and f be a multiplier of H. Define a set
Fixf (H) by

Fixf (H) := {x ∈ H | f(x) = x}.
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Proposition 3.19. Let f be a multiplier in a Hilbert algebra H.
Then Fixf (H) is a subalgebra of H.

Proof. Let x, y ∈ Fixf (H). Then we have f(x) = x and f(y) = y.
Hence f(x ∗ y) = x ∗ f(y) = x ∗ y, and so x ∗ y ∈ Fixf (H). This proves
that Fixf (H) is a subalgebra of H.

Proposition 3.20. Let H be a Hilbert algebra and f a multiplier of
H. If x ∈ Fixf (H), then x ∨ y ∈ Fixf (H).

Proof. Let x ∈ Fixf (H). Then we have f(x) = x, and so

f(x ∨ y) = f(y ∗ x) ∗ x)

= (y ∗ x) ∗ f(x)

= ((y ∗ x) ∗ x = x ∨ y.

This completes the proof.

Proposition 3.21. Let H be a commutative Hilbert algebra and f
a multiplier of H. If x ∈ Fixf (H) and x ≤ y, then y ∈ Fixf (H).

Proof. Let H be a commutative Hilbert algebra. If x ∈ Fixf (H) and
x ≤ y, then we have

f(y) = f(1 ∗ y) = f((x ∗ y) ∗ y)

= f((y ∗ x) ∗ x) = (y ∗ x) ∗ f(x)

= (y ∗ x) ∗ x = (x ∗ y) ∗ y

= 1 ∗ y = y.

This completes the proof.

Proposition 3.22. For any p ∈ H, the mapping αp(a) = p ∗ a is a
multiplier of H.

Proof. Let p ∈ H. Then we have

αp(a ∗ b) = p ∗ (a ∗ b) = a ∗ (p ∗ b) = a ∗ αp(b).

This completes the proof.

Proposition 3.23. For any p ∈ H, the mapping βp(a) = p ∗ (p ∗ a)
is a multiplier of H.

Proof. Let p ∈ H. Then we have
βp(a ∗ b) = p ∗ (p ∗ (a ∗ b))

= p ∗ (a ∗ (p ∗ b))

= a ∗ (p ∗ (p ∗ b))

= a ∗ βp(b)
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for all a, b ∈ H. This completes the proof.

Proposition 3.24. For any p ∈ H, the multiplier βp(a) = p ∗ (p ∗ a)
is a homomorphism of H.

Proof. Let p ∈ H. Then we have

βp(a ∗ b) = p ∗ (p ∗ (a ∗ b))

= p ∗ ((p ∗ a) ∗ (p ∗ b))

= (p ∗ (p ∗ a)) ∗ (p ∗ (p ∗ b))

= βp(a) ∗ βp(b)

for all a, b ∈ H. This completes the proof.

Proposition 3.25. Let H be a Hilbert algebra. If a ≤ b for any
a, b ∈ H, we have βp(a ∗ b) = 1.

Proof. Let a ≤ b. Then a ∗ b = 1. Thus we have βp(a ∗ b) = βp(1) =
p ∗ (p ∗ 1) = p ∗ 1 = 1. This completes the proof.

We call the multiplier αp(a) = p ∗ a of Example 3.22 as simple mul-
tiplier.

Proposition 3.26. For every p ∈ H, the simple multiplier αp of H
is an endomorphism of H.

Proof. Let a, b ∈ H. Using (H6), we have

αp(a ∗ b) = p ∗ (a ∗ b) = (p ∗ a) ∗ (p ∗ b) = αp(a) ∗ αp(b).

Hence αp is an endomorphism of H.

Proposition 3.27. The simple multiplier α1 is an identity function
of H.

Proof. For every a ∈ H, α1(a) = 1 ∗ a = a. This completes the proof.

Proposition 3.28. Let H be a Hilbert algebra. Then, for each p ∈
H, we have αp(x ∨ p) = 1.

Proof. For each p ∈ H, we have

αp(x ∨ p) = αp((p ∗ x) ∗ x) = p ∗ ((p ∗ x) ∗ x)

= (p ∗ x) ∗ (p ∗ x) = 1,

for any x ∈ H. This completes the proof.
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